
XPath

Tobias Schlitt <toby@php.net>, Jakob Westho� <jakob@php.net>

November 17, 2008

Contents

1 Introduction 2
1.1 The XML tree model . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Clari�cation of terms . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 An XML tree . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Node relations . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The idea behind XPath . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Addressing 7
2.1 Absolute vs. relative addressing . . . . . . . . . . . . . . . . . . . 7

2.1.1 Absolute addressing . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Relative addressing . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Addressing specialties . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Matching all descendants . . . . . . . . . . . . . . . . . . 10

2.3 Addressing attributes . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Union selections . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 XPath axes 13
3.1 Examples of axis usage . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Ancestor axis . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Attribute axis . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Descendant axis . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Following axis . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.5 Following-sibling axis . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Namespace axis . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.7 Parent axis . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.8 Preceding axis . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.9 Preceding-sibling axis . . . . . . . . . . . . . . . . . . . . 18

1



4 Functions, operators and conditions 19
4.1 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Node set functions . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 String functions . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Boolean functions . . . . . . . . . . . . . . . . . . . . . . 23
4.3.4 Number functions . . . . . . . . . . . . . . . . . . . . . . 23

5 XPath and XSLT 23
5.1 XSLT introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Coherence between XPath and XSLT . . . . . . . . . . . . . . . . 24
5.3 Use case of XPath inside a XSL transformation . . . . . . . . . . 24
5.4 In detail inspection of the transformation . . . . . . . . . . . . . 26
5.5 Demonstration of complex XPath usage in XSLT . . . . . . . . . 27

6 Complex XPath example 29

7 Conclusion 30

1 Introduction

This paper will give an overview on XPath1 an addressing language for XML2

documents. XPath is a W3C recommendation currently in version 1.0. XPath
was created in relation to the XSL recommendation and is intended to be used
with XSLT3 and XPointer4. Beside that, XPath can be used in a variety of
programming languages, commonly in combination with a DOM5 API.

Note, that the XML declaration has been left out of any examples in this
document for clarity reasons.

1.1 The XML tree model

XPath is a language to address a set of nodes in an XML document. To un-
derstand how XPath works, an understanding of the tree structure of XML
documents is necessary. This section will give a short introduction on how an
XML document is structured.

1.1.1 Clari�cation of terms

This section gives a rough introduction into terms that are used in this chapter
and overall the whole document. Only the most important terms are described

1W3C Recommendation: XPath http://www.w3.org/TR/xpath
2W3C Standard: XML http://www.w3.org/XML/
3W3C Recommendation: XSL http://www.w3.org/TR/xsl/
4W3C Recommendation: XPointer http://www.w3.org/TR/xptr/
5W3C Standard: DOM http://www.w3.org/DOM/

2



here, more specialized ones are introduced when needed. The XML standard
describes several types of items that might occur in a document. The most
commonly known item type are elements:

<t i t l e >Some book t i t l e </ t i t l e >

The above example shows a simple element named "title". Each element consists
at least of a start-tag. If the element has content (the children of the element),
an end-tag is also present. In case an element does not have children, it can
also consist just of a start tag, which is noted using a special syntax:

<t i t l e />

This element does not have any content. The usage of an end-tag is omitted.
Beside plain text (an atomic value), an element may also have one or more
elements as its children:

<book>
<t i t l e >Some book t i t l e </ t i t l e >
<author>

<f i r s tname>John</f i r s tname>
<lastname>Doe</lastname>

</author>
</book>

This example document consists of the root element (also called document ele-
ment) "book". Every XML document must have exactly one document element.
The root element in this has two child elements: "title" and "author". The "au-
thor" element in addition has two child elements "�rstname" and "lastname".
Those two and the "title" node have an atomic value as their content.

Elements belong to the category "nodes". An XML document only consists
of nodes and "atomic values". The other type of nodes are "attribute nodes":

<t i t l e l e v e l="1">Some book t i t l e </ t i t l e >

The element node shown above has an attribute node attached it:

l e v e l ="1"

Both, the attribute node and the element node have atomic values assigned
as their content. The content of the title element is "Some book title", the
content of the attribute node level is "1". The following example shows a simple
XML document and a tree visualization of its items. Items are the highest level
category in XML. Nodes and atomic values are both considered items.

1.1.2 An XML tree

A typical XML document looks like this:

<bookshe l f>
<book id="1">

<t i t l e lang="en">Beaut i f u l code</ t i t l e >

3



<author>A. Oram</author>
<author>G. Wilson</author>
<year >2007</year>
<pr i c e currency="Euro">35.95</ pr i ce>

</book>
<book id="2">

<t i t l e lang="de">eZ Components − Das Entwicklerhandbuch</ t i t l e >
<author>T. S ch l i t t </author>
<author>K. Nordmann</author>
<year >2007</year>
<pr i c e currency="Euro">39.95</ pr i ce>

</book>
</bookshe l f>

This document consists of several

• Items

• Nodes

• Elements

• Attributes

• Atomic values

Visualized in a tree, the document looks like this:

.

4



The chart shown above visualizes the tree structure of the XML document.
Element nodes (aka tags) are displayed in blue color, attribute nodes are orange
and atomic values are gray colored. The "bookshelf" tag is the root of the
tree, the document element. It has two child element nodes, which each contain
similar children. Therefore the second "book" node is skipped. The displayed
"book" node has two di�erent kinds of child nodes: One attribute node and 4
element nodes. The attribute node itself has an atomic value attached as its
value. The 4 child nodes of the "book" element are structured the same way.

1.1.3 Node relations

You already got to know the child relation between nodes and the document
element, the root node of each XML document. These terms should also be
familiar to you from other tree structures. Beside those, tree terminology is
used when talking about XML.

parent All child nodes of an element have this element as their parent.

sibling All nodes of the same type, that have a common parent, node are
siblings.

descendants All children of a node and their children recursively are collected
in the group of a nodes descendants. This are all nodes that reside below
a certain node.

ancestors In contrast to the descendants, the ancestors are all nodes that reside
above the a�ected node: His parent and his parents parents recursively.
The root node is an ancestor of every node, except of itself.

To illustrate this a bit more, here are some of the relations in the example
document:The document element "bookshelf" has a lot of descendants: Two
"book" elements, two "id" attributes, two "title" elements, two "lang" attributes
four author "elements" and many more. Some of these are also descendants of
the "element" with "id" 1. The ancestors of the "author" element with the
value "A. Oram" are "book" (the direct parent node) and "bookshelf" (the
parents parent). The element "title", the two "author" elements, the "year"
and "price" elements are siblings. The two "book" elements are siblings, too.
The "bookshelf" element does not have any siblings, no descendants and no
parent.

1.2 The idea behind XPath

The XPath language allows you to query a well-de�ned set of nodes from an
XML document. If you write an XPath expression and have it processed by an
XPath interpreter engine, you will always get a set of XML document items as
the result.

To illustrate this, here is a short introduction example, that might be exe-
cuted on the XML document shown in the section 1.1.2:

5



/ bookshe l f /book/ t i t l e

If you give this expression to a XPath processor together with the XML
document, you will received a set of "title" elements, containing the title for
each "book" element in the "bookshelf".

The XPath syntax is inspired by the typical way to address �le system
nodes (�les and directories) on Unix and Unix-like systems. The simple ex-
pression shown above consists of three element names, divided by slashes ("/").
Each slash creates a new context. Subsequent expression parts operate on this
context. A context may consist of a single element, multiple elements or no
elements.

For example, the expression above evaluates as follows:

1. �/� Create the �rst context, the document itself.

2. �bookshelf� Select all "bookshelf" elements found on this level. Only one,
the document root element.

3. �/� Create a new context of the found "bookshelf" elements as basis for
the next evaluation. The next evaluation takes place on the children of
the elements in the context.

4. �book� Select all "book" elements found as children of the context ele-
ments. This means all "book" elements which are direct children of the
"bookshelf" element.

5. �/� Create a new context and add the found "book" elements to it. This
context (in contrast to step 3) contains two elements.

6. �title� Select all "title" elements found as direct children of the current
context. Since the context contains two "book" elements, both are con-
sidered. This means all "title" elements which are direct children of any
of the "book" elements in the context are selected.

Since the expression does not de�ne any further evaluation steps, the set of
"title" elements is the return value.

1.3 Possibilities

XPath is usually not used on its own, but in combination with other XML
processing techniques. Most common are XSLT and DOM. The items retrieved
from an XPath query are then manipulated using these techniques. An XSL
Templates contains a "match" attribute, which holds an XPath expression. This
expression determines the XML items to which the template will be applied.

DOM is an API speci�cation for uni�ed working with XML documents.
It de�nes an object oriented tree structure for the parsed document and the
methods to navigate through the document and manipulate it's items. DOM is

6



implemented for a lot of programming languages like C6, C++7, Java8, PHP9

and even Haskell10. Since recursive processing of DOM tree structures from a
programming language alone is quite cumbersome, DOM Level 3 de�nes an API
for the evaluation of XPath expressions. The XPath evaluator the returns the
item set that matched the evaluation as a DOMNodeList object.

XPath allows to address any arbitrary item in a XML Document. You can
address sets of elements, attributes and atomic values, as well as sub-parts of
such

data. Beside that, the XPath speci�cation provides a large variety of func-
tions that can be used to extract certain portions of atomic values and perform
mathematical processing.

2 Addressing

The purpose of XPath is to address nodes (elements, attributes) in XML docu-
ments. The basic syntax of XPath expressions and how they typically evaluate
was already presented in the last chapter. This chapter introduces you to further
possibilities XPath o�ers you. You will get to know more syntax elements an
XPath expression may contain and how to use them to create simple expressions
for selecting nodes.

The subsequent chapters will give you a deeper view on XPath and introduce
even more complex operations you can use in an expression. However, this
chapter should last to basically understand how an XPath expression is built
and how you can use it for simple addressing purposes. The example document,
presented in the �rst chapter, will deal for the most examples in this chapter,
although it might slightly be altered to suite di�erent needs.

2.1 Absolute vs. relative addressing

In the previous chapter you already learned how to address element nodes from
the document basis. The following simple expression was analyzed to explain
XPath evaluation:

/ bookshe l f /book/ t i t l e

This will grab a list of all "title" elements from the document, which are children
of a "book" element, which is a child of a "bookshelf" element. Overall, it will
grab all "title" elements. So far we assumed, that the starting "/" refers to
the document basis and the �rst element name provided therefore refers to the
document element. This is not necessarily true. XPath is always embedded
into some other technical environment. As you already know, a DOM API of a

6DOM for C# http://gdome2.cs.unibo.it/
7http://xerces.apache.org/xerces-c/program-dom.html DOMforC++
8DOM for Java http://www.w3.org/2003/01/dom2-javadoc/index.html
9DOM for PHP http://php.net/dom/

10DOM for Haskell http://www.fh-wedel.de/~si/HXmlToolbox/

7



programming language is very common. This allows you, to de�ne an arbitrary
node of a document as the root for your XPath expression.

For example, you might grab one of the "book" elements from the document
using DOM functions and then evaluate an XPath expression on this element.
If you do so with the expression shown above, it will return an empty node
list, since the expression did not match anything. Now consider the following,
slightly extended, version of the example document:

<bookstore>
<bookshe l f>

<!−− . . . −−>
</bookshe l f>
<bookshe l f>

<!−− . . . −−>
</bookshe l f>
<!−− . . . −−>

</bookstore>

Now "bookshelf" is not the document element anymore. If you use the XPath
expression from above on the document root now, you would again receive an
empty list. Still, you could evaluate the expression on one of the "bookshelf"
elements from the document. However, there is nothing really special about
this behavior: It's all about context. Normally, an XPath expression takes the
document basis as the initial context, but in some cases, you can change this to
an arbitrary node.

The following sub-section introduce you to di�erent styles of addressing el-
ements in XPath. You already know the absolute style of addressing elements
absolutely and will see how you can also use relative addresses.

2.1.1 Absolute addressing

The examples you have seen so far all used absolute addressing. An absolute
item address uses the single slash as a separator. It means, that the next match
in an expression must occur as a direct child to the items matched so far. For
the example document shown in the last section, the XPath expression would
not produce any results if you evaluate it on the document element. Since it is
"bookstore" and not "bookshelf", the expression would fail in the �rst match
and return an empty item set.

2.1.2 Relative addressing

Beside the absolute addressing XPath allows to de�ne relative addresses. The
scheme to de�ne such addresses is again very similar to typical �le accesses on
the Unix command line. It is possible to select the current item through "." and
the parent item for the current matches using "..". In the "bookshelf" document
from above, for example the following expressions would work:

/ bookshe l f /book/ t i t l e / .

8



/ bookshe l f /book/ t i t l e / . .
/ bookshe l f /book/ t i t l e / . . / author

The �rst expression will simply select the "title" elements of the books again.
The expression is just an alternative to the expression you already got to know
to access the "title" elements:

/ bookshe l f /book/ t i t l e

The second expression will select the parent elements of the titles. There
are the "book" elements in the example document. The expression would work
almost the same as:

/ bookshe l f /book

Beside a slide di�erence: If the document would contain a "book" element
that does not have a title, it would not be listed, using the relative expression.
The last expression selects "author" elements from books. But, as the second
one, only of books that have a "title" element.

2.2 Addressing specialties

Just selecting a path through the document tree is kind of cumbersome and
limited. You don't always know the concrete path to a certain element or you
want to re-use an expression on di�erent document types. XPath o�ers you
two features for such purposes, which will be explained in the following two
sub-sections.

2.2.1 Wildcards

The wildcard used in XPath is the "*", which can be used instead of an element
name. This character de�nes that the name of the element to match does not
matter, but there must be an element. File system paths also use this wildcard,
but with a slightly di�erent meaning. The already discussed expression to fetch
all "title" elements could also be written like this:

/ bookshe l f /∗/ t i t l e
/∗/book/ t i t l e
/∗/∗/ t i t l e

All variants would fetch the same items as the already known expressions.
A di�erence would occur, for example, if a "bookshelf" could also contain news-
papers:

<bookshe l f>
<book id="1">

<t i t l e lang="en">Beaut i f u l code</ t i t l e >
<author>A. Oram</author>
<author>G. Wilson</author>
<year >2007</year>

9



<pr i c e currency="Euro">35.95</ pr i ce>
</book>
<book id="2">

<!−− . . . −−>
</book>
<newspaper id="3">

<t i t l e >Ct Magazin − Ausgabe 3/2008</ t i t l e >
</newspaper>

</bookshe l f>

In this case, the �rst and third expressions would also fetch the "title" of
the "magazine", while the second one would only deliver titles from books. The
star wildcard also works when addressing attributes, which will be shown in the
next main section.

2.2.2 Matching all descendants

So far, we only presented XPath expressions which worked on direct children
of certain elements. In addition you can address all descendant elements of the
current context using two slashes instead of a single one:

// t i t l e

The semantic of this expression is, to �nd all "title" elements which reside
below the current context. In other words, it �nds all descendant "title" ele-
ments. For the "bookshelf" example, the result would be the same as for the
absolute addressed expression:

/ bookshe l f /book/ t i t l e

If we change the example XML slightly, the result of the expressions would
di�er:

<bookshe l f>
<t i t l e >Computer s c i e n c e books</ t i t l e >
<book id="1">

<t i t l e lang="en">Beaut i f u l code</ t i t l e >
<author>A. Oram</author>
<author>G. Wilson</author>
<year >2007</year>
<pr i c e currency="Euro">35.95</ pr i ce>

</book>
<book id="2">

<t i t l e lang="de">eZ Components − Das Entwicklerhandbuch</ t i t l e >
<author>T. S ch l i t t </author>
<author>K. Nordmann</author>
<year >2007</year>
<pr i c e currency="Euro">39.95</ pr i ce>

</book>
</bookshe l f>

10



The already known expression would still �nd all "title" elements of all
books. In contrast, the relative expression would also �nd the "title" of the
"bookshelf", since this is also a descendant of the document base. It is possible
to use a descendants match anywhere in an XPath expression. For example, the
expression:

/ bookshe l f // t i t l e

Would also result in the same item list as the previously shown expression
did. The following expression instead results in the same list as the original
expression:

/ bookshe l f /book// t i t l e

2.3 Addressing attributes

So far you know how to address element nodes (aka tags), using XPath. Beside
these, XPath also allows you to address attribute nodes. You will learn how
to do this in the following sections. Addressing atomic values does not make
much sense, since these are always direct children of either an element or an
attribute. If you need to access the atomic value of a node, select it via XPath
and access it from the technology from which you are using XPath (possibly
DOM). However, in the next chapter you will see, that while you cannot select
atomic values, you still have access to them through functions and comparators.

While element matching in an XPath expression is simply done by using the
name of the desired element, attribute matches need to be pre�xed by the "@"
character. Beside that, such matches are used in an expression not di�erent
from element addressing. For example, it is possible to select all "id" attribute
items of book elements, using one of the following expressions:

/ bookshe l f /book/@id
//book/@id
//book//@id
//@id

The �rst expression uses absolute addressing of the desired items. The doc-
ument root element "bookshelf" is selected, below that, all "book" children are
selected and of these, the "id" attribute is fetched. The second version uses
relative addressing to fetch all "book" elements and the selects the attribute
"id" from these. The di�erence from this expression to the forth one is, that
the latter one would also fetch "id" attributes from descendant elements of a
"book". The last version �nally uses a relative address to select all "id" at-
tributes all over the document. In fact, for the example "bookshelf" document,
all of these expressions deliver the same set of items. In contrast, they do not
behave like this for the following example. It is a slightly modi�ed version of
the "bookshelf" example:

<bookshe l f id="computer_science_books">
<t i t l e >Computer s c i e n c e books</ t i t l e >

11



<book id="1">
<t i t l e lang="en">Beaut i f u l code</ t i t l e >
<author id="a_oram">A. Oram</author>
<author id="g_wilson">G. Wilson</author>
<year >2007</year>
<pr i c e currency="Euro">35.95</ pr i ce>

</book>
<book id="2">

<t i t l e lang="de">eZ Components − Das Entwicklerhandbuch</ t i t l e >
<author id="t_s ch l i t t">T. S ch l i t t </author>
<author id="k_nordmann">K. Nordmann</author>
<year >2007</year>
<pr i c e currency="Euro">39.95</ pr i ce>

</book>
</bookshe l f>

The �rst and second expressions, evaluated on this document, would result in
the same set of items that would have been returned from the original document.
A di�erent result would be retrieved from the third expression. Since this one
selects all "id" attributes that are a descendant of any "book" element, the "id"
attributes from the "author" elements would also be selected. The resulting
attribute items would be:

1. id="1"

2. id="a_oram"

3. id="g_wilson"

4. id="2"

5. id="t_schlitt"

6. id="k_nordmann"

Even more items would be selected by the last expression. This one selects all
"id" attributes from all over the document. Therefore the "id" attribute of the
"bookshelf" is returned in addition, as the �rst item. As already mentioned,
attribute matches can also be used together with the "*" wildcard. This allows
you to select all attribute items at once. The following examples illustrate the
usage of the wildcard with attributes:

/ bookshe l f /book/ t i t l e /@∗
/ bookshe l f /book//@∗

The �rst expression will only return the "lang" attributes from the "title"
elements, since they are the only available attributes there. The second expres-
sion will return di�erent attribute items: The "id" attributes from the "book"
elements, since they are direct children of the current context. The "lang" at-
tributes from the "title" elements and the "currency" attribute from the "price"

12



elements will be returned, since these are descendants of the current context.
The whole list would be:

1. id="1"

2. lang="en"

3. currency="Euro"

4. id="2"

5. lang="de"

6. currency="Euro"

2.4 Union selections

Sometimes it makes sense to not only select nodes by a single expression, but to
union the item sets returned by multiple expressions. Instead of evaluating two
or more expressions in a row and work on them separately, you can instruct the
XPath engine to unify them in a single return set. You connect two expressions
by the pipe char "|" to have them united.

/ bookshe l f /book | / bookshe l f /magazine
/ bookshe l f /book/ t i t l e | / bookshe l f /book/ author

The �rst expression would select all "book" elements from a "bookshelf"
and add all "magazine" elements to the result set, too. So, you can use this
expression on both, the original example document and the enhanced version
from a previous section, which also contained magazines. The second expression
will select all "title" elements of any books and all "author" elements. Note,
that you won't see any relationship between these. They are just selected in
the order they appear in the document. It is also possible to mix element and
attribute selection in such a combined expression, since both are just nodes.

3 XPath axes

As already explained a XML document represents a tree structure. Simple
navigational constructs to �nd and select elements have already been mentioned
in this paper. The following section will cover a more advanced navigating
scheme called "XPath Axes". These axes are similar to axes of a Cartesian
coordinate system. Using them it is possible to specify the exact location of any
point inside the system. Or in our case the exact location of any element.

The tree is treated as being inside a multi dimensional space, where every
axis represents a relation between some of the nodes. The XPath standard
de�nes 13 axes 11. These axis are named as follows:

11W3C XPath Speci�cation, XPath axes http://www.w3.org/TR/xpath#axes

13



Table 1: Available XPath axes
Axis Description

ancestor All ancestors of the current node. This includes the parent node, as well as the
parent of the parent and so on. Therefore this axis will always include the root
node

ancestor-or-self All ancestors, as well as the current node itself
attribute Attributes of the current element. If the current node is not an element this

axis will be empty.
child Every direct child of the current node.
descendant Every descendant of the current node. This includes children of children and

so on.
descendant-or-self All descendants or the current node itself.
following Every node following the current node. Descendants, attributes and

namespace nodes are excluded from this axis
following-sibling All siblings following the current node.
namespace All namespace nodes de�ned on the current node.
parent The parent node of the current node.
preceding All nodes before the current node. Ancestors, attributes and namespace nodes

are excluded
preceding-sibling All siblings preceding the current node
self The current node itself

Every step inside a location speci�ed as an XPath query actually consists of
three parts: An axis, a node test and one or more predicates, which are optional
and narrow down the node set to a more �ne grained subset 12. The syntax is
de�ned as follows:

axisname : : nodete s t [ p r ed i c a t e s ]

Because in most cases the child axis will be used. Therefore it is de�ned as
the default one. This means if the axis is omitted the child axis will be used
automatically. Therefore a simple location like this one.

/ bookstore /book/ t i t l e [ @lang="eng " ]

Is treated like it has been written like this:

/ c h i l d : : bookstore / ch i l d : : book/ ch i l d : : t i t l e [ @lang="eng " ]

3.1 Examples of axis usage

All of the examples below are applied to the following XML document:

<groupmembers>

12W3C XPath Speci�cation, Location http://www.w3.org/TR/xpath#

section-Location-Steps

14



<member>
<f i r s tname>Jakob</ f i r s tname>
<lastname>Westhoff</ lastname>
<x : n a t i o n a l i t y
xmlns:x=" ht tp : // we s tho f f swe l t . de/EXTENDED_MEMBER_NAMESPACE">

german
</ x : n a t i o n a l i t y>

</member>
<member>

<f i r s tname>Tobias</ f i r s tname>
<lastname>S c h l i t t</ lastname>

</member>
<member age="42">

<f i r s tname>John</ f i r s tname>
<lastname>Doe</ lastname>

</member>
</groupmembers>

3.1.1 Ancestor axis

Used XPath query:

/groupmembers/member/ f i r s tname [ t ex t ( ) = ' Jakob ' ] / ance s to r : : member

Result:

<member>
<f i r s tname>Jakob</ f i r s tname>
<lastname>Westhoff</ lastname>
<x : n a t i o n a l i t y
xmlns:x=" ht tp : // we s tho f f swe l t . de/EXTENDED_MEMBER_NAMESPACE">

german
</ x : n a t i o n a l i t y>

</member>

The beginning steps of the location, which are not preceded by a special axis
are using the child axis by default and therefore select every ��rstname� element
with the text "Jakob". In our case this is only one element. The following
"ancestor:member" step selects every ancestor node of the type member. The
same result could have been achieved only utilizing the child axis by using the
following expression:

/groupmembers/member [ f i r s tname='Jakob ' ]

But the slightly more complex path inside the tree shows quite well which
elements are on the ancestor axis.

15



3.1.2 Attribute axis

Used XPath query:

/groupmembers/member [ f i r s tname = ' John ' and lastname = 'Doe ' ] / a t t r i bu t e : : age

Result:

42

The member node which contains personal information about "John Doe"
is selected �rst. The attribute axis is �nally used to select the attribute of the
type "age".

3.1.3 Descendant axis

Used XPath query:

/groupmembers/member/ descendant : : ∗

Result:

<f i r s tname>Jakob</f i r s tname>
<lastname>Westhoff</lastname>
<x : n a t i o n a l i t y
xmlns : x="http :// we s tho f f swe l t . de/EXTENDED_MEMBER_NAMESPACE">

german
</x : na t i ona l i t y >
<f i r s tname>Tobias</f i r s tname>
<lastname>Sch l i t t </lastname>
<f ir s tname>John</f i r s tname>
<lastname>Doe</lastname>

The descendants of every member type node is selected by this query. As
you can see the surrounding member nodes are not included in this selection,
because they are no direct descendants of themselves. To include the member
nodes "descendant-or-self" should be used.

3.1.4 Following axis

Used XPath query:

/groupmembers/member [ 2 ] / f o l l ow i ng : : member

Result:

<member age="42">
<f i r s tname>John</f i r s tname>
<lastname>Doe</lastname>

</member>

16



The second member element in the document is selected �rst. This would
be the member "Tobias Schlitt". Finally the "following" axis is used to select
all following elements of the type member. Only one member element is fol-
lowing the current node. Therefore this one is printed out. Attention needs
to be brought to the fact that the node test for the type member is necessary.
Otherwise all following nodes would have been selected. Therefore the �rstname
and lastname nodes would have been outputted twice.

3.1.5 Following-sibling axis

Used XPath query:

/groupmembers/member [ 2 ] / f o l l ow ing−s i b l i n g : : ∗
Result:

<member age="42">
<f i r s tname>John</f i r s tname>
<lastname>Doe</lastname>

</member>

Because only siblings which follow the current node are selected using this
axis, we don't need the node test for member anymore, as in the example above.
In this case only elements on the same level as the current one are selected.

3.1.6 Namespace axis

Used XPath query:

/groupmembers/member [ f i r s tname = ' Jakob ' ] / n a t i o n a l i t y /namespace : : ∗
Result:

xmlns : x

On the selected nationality node the namespace �x� is de�ned. Therefore
the corresponding namespace node is returned by this query.

3.1.7 Parent axis

Used XPath query:

/groupmembers/member/ f i r s tname [ t ex t ( ) = ' Jakob ' ] / parent : : ∗
Result:

<member>
<f i r s tname>Jakob</f i r s tname>
<lastname>Westhoff</lastname>
<x : n a t i o n a l i t y
xmlns : x="http :// we s tho f f swe l t . de/EXTENDED_MEMBER_NAMESPACE">
german

</x : na t i ona l i t y >
</member>

17



In contrast to the ancestor axis example a node test for the type "member"
is not necessary in this query. Because the parent axis only includes the direct
parent, which is the enveloping member element in this case.

3.1.8 Preceding axis

Used XPath query:

/groupmembers/member [ 2 ] / preced ing : : member

Result:

<member>
<f i r s tname>Jakob</f i r s tname>
<lastname>Westhoff</lastname>
<x : n a t i o n a l i t y
xmlns : x="http :// we s tho f f swe l t . de/EXTENDED_MEMBER_NAMESPACE">

german
</x : na t i ona l i t y >

</member>

The second member element does only have one preceding member, which is
the �rst node in the document. The node test for the "member" type is needed
because, all child nodes of the outputted member element are preceding the
current node as well. Therefore they would have been outputted twice without
the node test.

3.1.9 Preceding-sibling axis

Used XPath query:

/groupmembers/member [ 2 ] / preceding−s i b l i n g : : ∗

Result:

<member>
<f i r s tname>Jakob</f i r s tname>
<lastname>Westhoff</lastname>
<x : n a t i o n a l i t y
xmlns : x="http :// we s tho f f swe l t . de/EXTENDED_MEMBER_NAMESPACE">

german
</x : na t i ona l i t y >

</member>

The di�erence between the preceding and preceding-sibling axes is the same
as with the following and following-sibling axes. The use of preceding-sibling
only selects elements on the same level as the current one. Therefore the node
test for the member type as in the example above is not needed anymore.

18



4 Functions, operators and conditions

By know you are already an XPath professional. You can address elements and
attribute nodes. You have access to parents and children and can create complex
matches of parent nodes by matching their children through relative addressing.
You know about the di�erent axis XPath knows in XML documents and can
utilize them to create even more complex queries. This knowledge usually lasts
to give you a handy tool at hand that allows you to select a set of XML nodes
from a document and process these in your favorite programming language.
However, there are many cases, where you still need a lot of hand work in the
language to extract a sub set of the selected nodes: What, if you only want
nodes that have a certain attribute value? What if you need only the �rst child
of a certain element?

Functions and comparators give you the necessary power to achieve such
goals in pure XPath and therefore allow you to also realize such tasks in pure
XSL. In this section we illustrate examples again on a variation of the bookshelf
XML �le you already know:

<bookshe l f id="computer_science_books">
<t i t l e >Computer s c i e n c e books</ t i t l e >

<book id="1">
<t i t l e lang="en">Beaut i f u l code</ t i t l e >
<author id="a_oram">A. Oram</author>
<author>G. Wilson</author>
<year >2007</year>
<pr i c e currency="Euro">35.95</ pr i ce>

</book>
<book id="2">

<t i t l e lang="de">eZ Components − Das Entwicklerhandbuch</ t i t l e >
<author>T. S ch l i t t </author>
<author id="k_nordmann">K. Nordmann</author>
<pr i c e currency="Euro">39.95</ pr i ce>

</book>
</bookshe l f>

4.1 Conditions

By now, you already saw how to select a set of XML nodes, which match a
certain expression. You can match absolute and relative paths throughout the
document and even perform some more advanced checks, using nasty tricks. For
example, if you want to select all authors, which have an "id" attribute, you
could use the following expression:

/ bookshe l f /book/ author /@id / . .

This one selects the "bookshelf", all "books" and then the "author" elements
of the books. After that, the "id" attribute of the "author" element is matched.

19



If no such attribute is available, it cannot be included in the next context. In the
next context the parents of the found "id" attribute nodes are selected, which
are the "author" elements again. But only those,

which really have an attribute named "id". An alternative to this, somewhat
hackish, expression is, to use a condition with the "author" match:

/ bookshe l f /book/ author [ @id ]

The square braces indicate, that the context created by the match right in
front of it should be limited to nodes, which satisfy the condition. The condition
is given inside of the braces. In the example, the condition is that an attribute
(indicated by the "@") must be available. You will learn in the next sections
how to match against values inside the condition and how to invert the match
using boolean negation.

It is not possible to match a child element condition, but you already know
how to do this: It works similar to the alternative attribute match shown at the
start of this section. The wildcard "*" also works in conditions. For example
you can use

/ bookshe l f /book/ author [@∗ ]

to match all "author" elements which have any attributes set. While the con-
ditions in the examples shown above basically return boolean values, it is also
possible to give a numeric value in the condition:

/ bookshe l f /book/ author [ 1 ]

In this case, only the �rst author of every "book" element is selected. The
section about functions will give you more examples of how to use numeric
conditions.

4.2 Operators

Inside of matches, XPath allows you to use a set of comparison operators, which
you should already be familiar with from your favorite programming language.
The following table shows an overview of the operators and explains shortly,
what they do:

Operator(s) Explanation

+, -, * Mathematical operations (addition, subtraction and multiplication)
div Mathematical division
mod Mathematical modulo operator
= Check for equality (mathematical and string)
!= Check for inequality (mathematical and string)

<, <= Less than and less than or equal check
>, >= Greater than and greater than or equal check
or Logical or
and Logical and

There is no logical negation operator, but a function which returns the
negated value. See the next section for details. Using these operators you

20



can already create some more powerful conditions to limit the set of matched
nodes. Some examples on how to use operators:

/ bookshe l f /book/ t i t l e [ @lang = ' de ' ] / . .

This expression matches only book titles, which are in German language and
returns the "book" elements, where such a title is found. So in fact, it returns
all German books. It is not only possible to operate on attribute values, but
also on tags:

/ bookshe l f /book [ p r i c e < 39 ]

Using this expression you will receive all "book" elements, which have a
"price" tag as a child, that contains a number that is smaller than 39. If you
want to know the price of book number 1, you could use the following expression:

/ bookshe l f /book [ @id = 1 ]/ p r i c e

4.3 Functions

Finally, XPath o�ers a large set of functions, that allow you to operate on
atomic values before and while comparing them in an expression. Functions
usually reside in a namespace in XPath version 2.0, which is named "fn". Since
XPath 1.0 is the current recommendation, we leave this namespace out in further
examples. It should usually be save to leave it out when using them in practice
anyway.

We already referred to one function in the previous chapters: "not()". This
function returns the boolean negation of a submitted boolean value. Using
this function, you can �nally invert the attribute-existence check, we performed
earlier:

/ bookshe l f /book/ author [ not ( @id ) ]

This expression returns all "author" elements, that do not have an attribute
"id". Due to the variety of functions, we have limited the examples shown in this
chapter to a small subset, which illustrates the usage. The W3C recommenda-
tion contains a complete function reference13. XPath functions are categorized
and you will see at least one example of each category in following.

4.3.1 Node set functions

The functions in this category work on the node set which is currently matched.
The most important ones are:

last() This function returns the number of the last node of a certain type.

count() This function returns the number of nodes in the current context.

13XPath function reference http://www.w3.org/TR/xpath#corelib

21



position() This function does actually not work on a set of nodes, but always
returns the position of the current nodes. You can use this functions to
fetch for example only the last author of a book, or the second last one:

/ bookshe l f /book/ author [ l a s t ( ) − 1 ]

Another possibility is to return only the authors at an odd position:

/ bookshe l f /book/ author [ p o s i t i o n ( ) mod 2 = 1 ]

4.3.2 String functions

XPath provides a large variety of string functions. Some you might be interested
in, right now are:

concat() The concat() function concatenates 2 or more strings and returns
their concatenation.

string-join() You give an arbitrary number of strings to this function, as some
kind of list. In addition you give it a single separator string. The latter
one will be used to to separate the other strings while being concatenated.
An example:

s t r i ng−j o i n ( ( 'Milk ' , ' Butter ' , ' Flower ' ) , ' , ' )

Will return 'Milk, Butter, Flower'.

substring() This function extracts a part from a string, de�ned by a start
index and an optional length value.

string-length() Returns the length of the given string.

escape-uri() This method escapes the given string so that it can safely be used
in an URI. This is especially useful, if you need to give a complete URI as
a parameter to another one.

starts-with() You give this function a two strings. It returns true, if the
�rst string starts with the second one, false otherwise. The function ends-
with() is the counterpart for this function, checking for the end of a string.

contains() This function returns, if the second given string occurs in the �rst
one.

replace() This function receives three strings: The second is a match string, as
for contains(), the third is a string that is used to replace every occurrence
of the match. The replacement takes place in the �rst string.

Some example expressions for illustration:

/ bookshe l f /book/ author [ sub s t r i ng ( . , 1 , 1 ) = 'T ' ]

22



This expression selects all authors whose names begin with a "T". Note
the reference to the current node, using the already known ".". The following
expression selects only authors whose name contains an abbreviation (indicated
by a "." in the name):

/ bookshe l f /book/ author [ conta in s ( . , ' . ' ) ]

The last expression returns only books, of which the titles are longer than
15 characters:

/ bookshe l f /book/ t i t l e [ s t r i ng−l ength ( . ) > 1 5 ] / . .

4.3.3 Boolean functions

The boolean functions are mostly used to realize certain boolean expressions.
The most important ones are:

not() To negate a given boolean expression.

true() Returning the boolean value "true". Its counterpart function is false().

An example for the not() function was already given at the beginning of this
chapter.

4.3.4 Number functions

The number function category contains the most common functions other pro-
gramming languages know:

�oor() Returns the largest integer number that is not greater than the given
parameter.

ceiling() As the counterpart to �oor(), this function returns the smallest inte-
ger number that is not smaller than the given parameter.

round() Returns the closest integer number of the given parameter.

An example:

/ bookshe l f /book/ p r i c e [ round ( . ) = 40 and @currency = 'Euro ' ] / . .

This expression returns all books which cost about 40 Euros.

5 XPath and XSLT

5.1 XSLT introduction

XSLT is an abbreviation for "Extensible Stylesheet Language Transformations"14.
This transformation language is completely XML based. Its main purpose is to

14W3C XSLT Speci�cation http://www.w3.org/TR/xslt

23



de�ne transformation rules which can be applied to any XML document. The
target document may be another XML structure, any other kind of human-
readable output or arbitrary binary data. Attention needs to be given to the
fact that this transformation does not change the input document directly. The
input is read, transformed and �nally written to the transformed output �le.
The original document remains untouched. This easily allows to process one
input �le with several di�erent style sheets to create a vast majority of output
formats.

5.2 Coherence between XPath and XSLT

XPath and XSLT belong to a larger group of XML tools called "Extensible
Stylesheet Language" or XSL for short15. XSLT makes heavy usage of XPath
it is therefore discussed more detailed here. To be able to de�ne transformation
rules on XML documents a way of addressing nodes and sub trees inside the
document is needed. As mentioned before XPath has been developed to do just
this. Consequentially it is used for this purpose.

5.3 Use case of XPath inside a XSL transformation

To present you with a use case of XPath a really simple XSL transformation
will be shown and discussed in detail. This will help to understand how XPath
can be used to ease the work on XML documents.

<?xml ve r s i on ="1.0" encoding="utf−8"?>

<xs l : s t y l e s h e e t v e r s i on ="1.0"
xmlns : x s l="http ://www.w3 . org /1999/XSL/Transform">

<xs l : template match="/">

<html>
<head>

<t i t l e >PG Members Example</ t i t l e >
</head>
<body>

<h1>L i s t o f PG members</h1>
<table>

<thead>
<tr>

<td>Firstname</td>
<td>Lastname</td>

</tr>
</thead>
<tbody>

15W3Schools, xsl language introduction http://w3schools.com/xsl/xsl_languages.asp

24



<xs l : for−each s e l e c t="groupmembers/member">
<tr>

<td>
<xs l : value−o f s e l e c t="f i r s tname " />

</td>
<td>

<xs l : value−o f s e l e c t="lastname" />
</td>

</tr>
</x s l : fo r−each>

</tbody>
</table>

</body>
</html>

</x s l : template>

</x s l : s t y l e s h e e t >

The Stylesheet is applied on the following snippet of XML:

<groupmembers>
<member>

<f i r s tname>Jakob</f i r s tname>
<lastname>Westhoff</lastname>

</member>
<member>

<f i r s tname>Tobias</f i r s tname>
<lastname>Sch l i t t </lastname>

</member>
<member>

<f i r s tname>John</f i r s tname>
<lastname>Doe</lastname>

</member>
</groupmembers>

The result of the transformation will look like this:

<html>
<head>

<meta http−equiv="Content−Type" content="text /html ; cha r s e t=UTF−8">
<t i t l e >PG Members Example</ t i t l e >

</head>
<body>

<h1>L i s t o f PG members</h1>
<table>

<thead>
<tr>

25



<td>Firstname</td>
<td>Lastname</td>

</tr>
</thead>
<tbody>

<tr>
<td>Jakob</td>
<td>Westhoff</td>

</tr>
<tr>

<td>Tobias</td>
<td>Sch l i t t </td>

</tr>
<tr>

<td>John</td>
<td>Doe</td>

</tr>
</tbody>

</table>
</body>

</html>

For this transformation the program xsltproc16 has been used. The gen-
erated output with the given style sheet generated valid XHTML out of our
initially de�ned grouplist.

5.4 In detail inspection of the transformation

We will now take a closer look at elements of the XSLT �le.

<?xml ve r s i on ="1.0" encoding="utf−8"?>

As with every well-formed XML document this one is started with a general
type de�nition line which supplies the used XML version as well as the utilized
charset. In this case we are using XML version 1.0 and have stored our style
sheet content int UTF-817.

<x s l : s t y l e s h e e t v e r s i on ="1.0"
xmlns : x s l="http ://www.w3 . org /1999/XSL/Transform">

The "stylesheet" element needs to enclose every XSLT. It is needed to declare
general information like for example the used version. In our case it is also used
to declare the XSL namespace. Every element containing XSLT processing
information needs to be in a de�ned namespace. In most cases the abbreviation
for this namespace will be "xsl". But as far as the reference to the correct URI
is made the namespace name can be freely chosen.

16Xmlsofts xsltproc http://www.xmlsoft.org/
17UTF-8 is a special encoding of Unicode characters. More information on this topic can

be found here: http://en.wikipedia.org/wiki/UTF-8

26



<xs l : template match="/">

The following line is the �rst one which is of real interest to us, because an
XPath expression is used in it. The "/" inside of the match attribute is actu-
ally an XPath expression which selects every document root. In more complex
XSLT de�nitions you will most likely de�ne more than one template, where each
template handles only parts of the document. In our small example this is not
needed. Therefore the match on the document root ensures that the template
is called once on the complete document.

Most of the following elements are just copied to the output document,
because they are not inside the de�ned "xsl" namespace. The next element
which is of interest to us is "for-each":

<x s l : fo r−each s e l e c t="groupmembers/member">

"For-each" is a special XSLT element which iterates over a set of selected
nodes. In our case this iteration should be done over all members inside the
source XML. Therefore a XPath expression is used to retrieve this subset of
elements. Because no "/" is used at the beginning of the expression we are
addressing the elements from the current element on. In our case this is the
document root, because of the template matching rule explained just before.
On more complicated structures the di�erence of relative to absolute addressing
can be used to handle nested elements with ease.

<x s l : value−o f s e l e c t="f i r s tname " />

To copy the �value-of� a speci�ed source element into the target tree the
XSLT element of the same name is used. In our case we just select the node
"�rstname" relative to the current node, which is the currently processed mem-
ber element. The exact same method is used to handle the lastname.

5.5 Demonstration of complex XPath usage in XSLT

In the discussed example quite simple XPath expressions have been used for
demonstration purposes. In productive environments they are likely to be a lot
more complex. To show the power of XSLT and XPath a short transformation
snippet from the phpUnderControl18 project is discussed in detail below.

<x s l : s t y l e s h e e t xmlns : x s l="http ://www.w3 . org /1999/XSL/Transform" ve r s i on="2.0">

<xs l : template name=" i s . odd . or . even">
<xs l : param name="c" s e l e c t ="1" />
<xs l : param name="n" s e l e c t ="." />
<xs l : choose>

<xs l : when t e s t="name( $n ) = ' t e s t c a s e ' and $n/ preceding−s i b l i n g ::∗">
<xs l : c a l l−template name=" i s . odd . or . even">

18phpUnderControl is a continuous integration tool for PHP, which makes heavy use of
XSLT to transform XML based log �les into readable and optical pleasant HTML result
views. More information can found at the o�cial website http://phpundercontrol.org

27



<xs l : with−param name="c" s e l e c t="$c + 1" />
<xs l : with−param name="n" s e l e c t="$n/ preceding−s i b l i n g : : ∗ [ 1 ] " />

</x s l : c a l l−template>
</x s l : when>
<xs l : when t e s t="name( $n ) = ' t e s t s u i t e ' and $n/ preceding−s i b l i n g ::∗">
<!−− Get preced ing node −−>
<xs l : v a r i ab l e name="preced ing " s e l e c t="$n/ preceding−s i b l i n g : : ∗ [ 1 ] " />
<!−− Count ch i l d nodes o f preced ing −−>
<xs l : v a r i ab l e name="ch i l d . count" s e l e c t="count ( $preced ing // t e s t c a s e ) +

count ( $preced ing // t e s t s u i t e )" />

<xs l : c a l l−template name=" i s . odd . or . even">
<xs l : with−param name="c" s e l e c t="$c + 1 + $ch i l d . count" />
<xs l : with−param name="n" s e l e c t="$preced ing " />

</x s l : c a l l−template>
</x s l : when>
<xs l : when t e s t ="(name( $n ) = ' t e s t c a s e ' or name( $n ) = ' t e s t s u i t e ' ) and conta in s ( $n / . . /@name , ' : : ' ) " >
<xs l : c a l l−template name=" i s . odd . or . even">

<xs l : with−param name="c" s e l e c t="$c + 1" />
<xs l : with−param name="n" s e l e c t="$n / . . " />

</x s l : c a l l−template>
</x s l : when>
<xs l : otherwise>
<xs l : i f t e s t="$c mod 2 = 1">

<xs l : text>oddrow</x s l : text>
</x s l : i f >
</x s l : otherwise>

</x s l : choose>
</x s l : template>

</x s l : s t y l e s h e e t >

This style sheet is most likely to be used in future versions of phpUnderCon-
trol to create lists with a di�erent behavior for odd and even rows. This kind of
di�erentiation is often used in modern web application to allow an easy optical
separation of di�erent data rows, for example by alternating the color between
odd and even rows.

As you can see this XSLT is a lot more sophisticated than the one which
was shown before. It makes heavy usage of the functional programming features
XSLT o�ers. The transformation speci�c details will not be discussed. Never-
theless one of the used XPath queries will be explained to make the possibilities
of this language clearer.

count ( $n/ preceding−s i b l i n g : : ∗ [ 1 ] / / t e s t c a s e )
+ count ( $n/ preceding−s i b l i n g : : ∗ [ 1 ] / / t e s t s u i t e )

The $n in this expression is a variable containing a part of the used node
path. Variables are not part of the XPath speci�cation. They can only be used

28



inside a XSLT style sheet. This expression sums up the number of testcase and
testsuite elements, which are somewhere under the �rst preceding sibling of the
node $n. It might look quite complex at �rst, but splitted into all of its parts
it is quite readable.

$n/ preceding−s i b l i n g : : \ ∗ [ 1 ]

Select the �rst preceding sibling of $n. The sibling might be of any element
type.

// t e s t c a s e

// t e s t s u i t e

Select all testcase and testsuite elements below the current one. The level of
these nodes is not constricted to the level directly below the active one. Every
level below the current one satis�es this expression.

count ( )

Count is a XPath function which simply returns the number of the elements
in the node set instead the node set itself.

Most complex XPath expression can be splitted up like this to make them
more easy to understand.

6 Complex XPath example

To show the possibilities of XPath this section will explain a complex expression
in detail, showing that quite sophisticated selections are realizable with XPath.

The problem the following expression tries to solve is rooted in the world of
the Resource Description Framework (short RDF). The RDF speci�cation allows
elements from arbitrary name spaces inside its description element. Therefore
it is a common task to retrieve a list of all used name spaces. This particular
task often means to analyze every child of description elements to create a
comprehensive collocation. Most of the times it is a lot faster to select the
needed nodes directly using an XPath expression.

The following query can be used to get all nodes of all the di�erent name
spaces inside a RDF documents description element.

//∗ [ name ( . ) = ' rd f : Descr ipt ion '
] / ∗ [ namespace−u r i ( . ) != namespace−u r i ( . . ) and

namespace−u r i ( . ) != ` ` and
namespace−u r i ( . ) != namespace−u r i ( preceding−s i b l i n g : : ∗ ) ]

To easily handle this expression it is split up into its main parts.

//\∗ [ name ( . ) = ' rd f : Descr ipt ion ' ]

This part selects every node at any level of the document which name is
rdf:Description. For this to work the the rdf namespace name needs to be
registered and mapped to the correct namespace URI.

29



namespace−u r i ( . ) != namespace−u r i ( . . )

Because only name spaces which are di�erent from the original rdf `namespace
are relevant we check that the current namespace-URI is di�erent from the one
which exists one level up. One level up lies the rdf:Description element, therefore
this does exactly what it is supposed to do.

namespace−u r i ( . ) != ' '

Someone might add elements which are in no de�ned namespace. Therefore
nodes with an empty namespace-URI are ignored completely.

namespace−u r i ( . ) != namespace−u r i ( preceding−s i b l i n g : : ∗ )

This one is a little more tricky. It ensures that we are only receiving one
node of each namespace. It does this by checking any preceding sibling of the
current node for the same namespace as the one which is currently processed.
If such a node is found the current one can be skipped, because one node inside
this namespace already exists.

7 Conclusion

As shown by the various small and complex examples XPath presents a sophis-
ticated way of selecting sets of nodes inside any arbitrary XML document. It
can be used to retrieve all sorts of di�erent sets, ranging from simple directly
addressed elements to quite complex selections. XPath axis round o� the feature
set. They provide all necessary means to explicitly de�ne the way of navigating
the XML tree structure. This allows the selection of complex node sets from
di�erent levels of the document. Regardless of all this features XPath impresses
by its simple and clear syntactical structure. Even the most complex expressions
will always consist of one or more �steps� which form a location. These �steps�
have a clearly de�ned structure which is quite simple, if you take into account
the power of XPath. Combined with other XSL parts like XSLT XPath is even
more powerful and can be used as part a functional programming language to
easily transform a XML document into any output format.

30


